Circular colorings, orientations, and weighted digraphs

نویسنده

  • Hong-Gwa Yeh
چکیده

In this paper we prove that if a weighted symmetric digraph (~ G, c) has a mapping T : E( ~ G) → {0, 1} with T (xy) + T (yx) = 1 for all arcs xy in ~ G such that for each dicycle C satisfying 0 < |C|c(mod r) < maxxy∈E(~ G) c(xy) + c(yx) we have |C|c/|C|T ≤ r, then (~ G, c) has a circular r-coloring. Our result generalizes the work of Zhu (J. Comb. Theory, Ser. B, 86 (2002) 109-113) concerning the (k, d)-coloring of a graph, and thus is also a generalization of a corresponding result of Tuza (J. Comb. Theory, Ser. B, 55 (1992) 236-243). Our result also strengthens a result of Goddyn, Tarsi and Zhang (J. Graph Theory 28 (1998) 155-161) concerning the relation between orientation and the (k, d)-coloring of a graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular colorings of edge-weighted graphs

The notion of (circular) colorings of edge-weighted graphs is introduced. This notion generalizes the notion of (circular) colorings of graphs, the channel assignment problem, and several other optimization problems. For instance, its restriction to colorings of weighted complete graphs corresponds to the traveling salesman problem (metric case). It also gives rise to a new definition of the ch...

متن کامل

Colorings and Orientations of Matrices and Graphs

We introduce colorings and orientations of matrices as generalizations of the graph theoretic terms. The permanent per(A[ζ|ξ]) of certain copies A[ζ|ξ] of a matrix A can be expressed as a weighted sum over the orientations or the colorings of A . When applied to incidence matrices of graphs these equations include Alon and Tarsi’s theorem about Eulerian orientations and the existence of list co...

متن کامل

Hajj Os Theorem for Colorings of Edge-weighted Graphs

Hajj os theorem states that every graph with chromatic number at least k can be obtained from the complete graph K k by a sequence of simple operations such that every intermediate graph also has chromatic number at least k. Here, Hajj os theorem is extended in three slightly diierent ways to colorings and circular colorings of edge-weighted graphs. These extensions shed some new light on the H...

متن کامل

A Dynamic View of Circular Colorings

The main contributions of this paper are three-fold. First, we use a dynamic approach based on Reiter’s pioneering work on Karp-Miller computation graphs [19] to give a new and short proof of Mohar’s Minty-type Theorem [15]. Second, we bridge circular colorings and discrete event dynamic systems to show that the Barbosa and Gafni’s results on circular chromatic number [5, 21] can be generalized...

متن کامل

Hajós Theorem For Colorings Of Edge-Weighted Graphs

Hajj os theorem states that every graph with chromatic number at least k can be obtained from the complete graph K k by a sequence of simple operations such that every intermediate graph also has chromatic number at least k. Here, Hajj os theorem is extended in three slightly diierent ways to colorings and circular colorings of edge-weighted graphs. These extensions shed some new light on the H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006